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1. INTRODUCTION  
 

The management of ports involves a many complexities, and challenges are amplified when transportation 

of hazardous materials are involved. Effective berth allocation is crucial in any port management system, but 

when hazardous materials are in transit, the stakes are significantly higher. This document aims to introduce 

the design considerations and frameworks underlying a specialized berth allocation algorithm tailored 

specifically for the transportation of hazardous materials. 

Typical operational and service level indicators, such as berth allocation waiting time, are very important for 

port performance intensity of port asset utilization. The waiting time between arrival and the allocation of 

berth is decreasing constantly. The world’s largest ports, like Antwerp and Hamburg, recorded a reduction in 

the port-to berth time. Less positive performances were recorded elsewhere, while in some ports port-to-

berth waiting times have increased like in India and some African countries [1].  

Traditional berth allocation focuses on various operational objectives such as minimizing wait times, 

optimizing resource usage, and maximizing throughput. However, these objectives, although critical, are not 

sufficient when hazardous materials are involved. Factors such as safety regulations, environmental risks, 

proximity to populated areas, and the potential for catastrophic events demand a more nuanced and 

specialized approach to berth allocation. In the past there have been many catastrophic events during 

manipulation of dangerous goods in ports.  

Proposed algorithm is designed to integrate these multiple layers of complexity into a cohesive system that 

aligns with both operational goals and safety protocols. Leveraging a combination of exact and heuristic 

methods, this algorithm aims to provide not just an optimized but also a safe berth allocation solution. 

The scope of this introduction serves to set the stage for the detailed discussions that follow, encompassing 

problem formulation, mathematical modelling, algorithmic design, and testing and validation phases. By the 

end of this report, the goal is to present a robust, safety-first berth allocation algorithm that efficiently 

manages the heightened risks associated with transporting hazardous materials through port facilities. 

In summary, the overarching objective is to deliver a berth allocation solution that maintains the delicate 

balance between operational efficiency and the stringent safety requirements that the transportation of 

hazardous materials necessitates. 

 

1.1 General Background 

 

Ports serve as pivotal nodes in global trade networks, facilitating the exchange of goods and services 

across international borders. Over the years, port operations have become increasingly complex due to 

growing trade volumes, diverse types of cargo, and the advancement in shipping technologies. Among 

the types of cargo handled, hazardous materials present a unique set of challenges that require 

specialized attention. 
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Hazardous materials, also known as HazMat, include substances that are flammable, toxic, reactive, or 

corrosive. The transportation of these materials through ports involves heightened risks, including the 

potential for accidents that could result in fires, explosions, or environmental contamination. The 

complexities and dangers associated with hazardous materials make traditional berth allocation 

algorithms insufficient. 

Transporting hazardous materials is governed by an intricate web of regulations at both national and 

international levels. Agencies such as the International Maritime Organization (IMO) and national 

agencies have guidelines and requirements that specifically address the safe handling and storage of 

hazardous materials. Failure to adhere to these guidelines can result in severe legal penalties and 

reputational damage. In the past there have been many catastrophic events during manipulation of 

dangerous goods in ports because of failure to adhere to these guidelines. One of the largest non-

nuclear explosions in history damaged the port and damaged over half the Beirut city. The explosion of 

the cargo of ammonium nitrate had entered Beirut’s port, in November 20131.  There have been noted 

another similar cases with ammonium nitrate cargo in the past but with less damage like in USA, 

Winston-Salem, North Carolina in 2022 (0 casualties), China Port of Tianjin in 2015 (173 casualties), USA, 

Vest, Texas in 2013 (15 casualties) etc.  

Regarding Programming area of Interreg Albania-Italy-Montenegro it is worth mentioned the recent 

case of transportation of ammonium nitrate in Port of Bar. The Montenegrin public discovered in Jully 

2023 that a ship with 30,000 tons of bulk ammonium nitrate had sailed from the Russian Federation to 

the Port of Bar, from where it should be transported to Serbia. As the transit of such goods is considered 

dangerous, especially if stored inadequately, port authorities has adopted a safety plan following the 

transhipment process. Also railway company adopted a safety plan following the transportation 

process. The entire process is supervised by a team of qualified personnel who have decades of 

experience in working with nitrogen fertilizers2. Anyway, the citizens of Bar were very upset. The 

unloading of ammonium nitrate, in bulk from the ship started in middle of August 2023. The transfer of 

the ship to the anchorage was carried out in accordance with all the safety procedures that we are 

obliged to follow when dealing with this type of cargo3.  

Traditional berth allocation algorithms focus on optimizing key performance indicators like minimizing 

ship turnaround time, maximizing berth utilization, and reducing operational costs. While these 

algorithms work well for general cargo, they often lack the specialized features needed for hazardous 

material handling, such as risk assessment models and emergency response strategies. 

Given the regulatory landscape and the elevated risks, there is an imperative need for an algorithm that 

can handle the complexities of hazardous material transportation. A specialized berth allocation 

algorithm for hazardous materials must not only aim for operational efficiency but also give paramount 

importance to safety and compliance with regulations. Against this background, the objective is to 

design a berth allocation algorithm that incorporates the multi-faceted complexities associated with 

hazardous material transportation, providing a solution that is both efficient and exceptionally safe. 

                                                           
1 https://www.hrw.org/report/2021/08/03/they-killed-us-inside/investigation-august-4-beirut-blast  

2 https://www.cdm.me/english/hazardous-cargo-awaiting-transit-from-port-of-bar/  

3 https://www.youtube.com/watch?v=RBssgyUlbtA  

https://www.hrw.org/report/2021/08/03/they-killed-us-inside/investigation-august-4-beirut-blast
https://www.cdm.me/english/hazardous-cargo-awaiting-transit-from-port-of-bar/
https://www.youtube.com/watch?v=RBssgyUlbtA
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This forms the foundational context within which the algorithm is to be developed, striking a balance 

between efficiency, safety, and compliance, to cater to the specific challenges posed by hazardous 

material transportation through ports. 

Regarding berth allocation problem, the goal of CRISIS project is to optimally assign and schedule ships 

to berthing areas along a quay. The objective is the minimization of the total (weighted) service time for 

all ships, defined as the time elapsed between the arrival in the port and the completion of handling the 

minimization activity includes the estimate of the downtime due to wave and wind action at a certain 

berth. This analysis will be punctual regarding the ports of Albania, Italy and Montenegro. When the 

transportation of hazardous materials is involved, one must also consider the level of risk associated to 

the transported goods. To this purpose, the risk measures identified in Activity A.T1.2 will be used. In 

addition, the models will account for the level of exposure of the port areas with respect to wave 

agitation and/or overtopping.   
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2 OBJECTIVES, BENEFICIARIES, DESCRIPTION OF ASSIGNMENT AND 

OUTPUTS 
 

This chapter will describe objectives, beneficiaries, and descriptions of assignments and outputs.  

2.1 General Background 

 

The Program Area of Interreg - IPA CBC Italy - Albania – Montenegro4 is particularly exposed to risks arising 

from natural and human disasters: desertification, fires, and pollution, are just some examples, to which it 

must be added the aggression deriving from the processes of economic development that afflict the territory.  

The strategic partnership that links Italy to Albania and Montenegro has led, over the years, to the signing of 

a series of treaties that have created a favourable environment for investments aimed at promoting the 

stabilization and pacification of the Balkan region, through the development cooperation and territorial 

promotion, favoured by important trilateral trade and cultural relations in various sectors: energy, 

manufacturing industries, urban planning, water resources management, environmental reclamation, etc. 

So, it is in this perspective that the action of this project is inserted, aimed at mitigating the effects deriving 

from the disasters caused by the sea multimodal transport of hazardous materials. The most important 

challenge, therefore, is to develop common policies capable of constantly monitoring the transport of these 

materials, through the development of systemic cooperation schemes that involve, at various levels, the 

stakeholders of the participating countries [2]. 

The main objective of this project is to improve the transportation activities in the programme area, 

emphasizing the transportation of hazardous materials. In particular, this project will contribute to the 

specific objective “4.1 Transport” by studying the peculiar risks in the program area and developing novel 

decision support modules aiming to assist cross-border management of hazardous materials5.  

 

2.1.1 Specific Objectives 

 

The CRISIS project will contribute to allocating ships carrying hazardous materials to berths based on real-

time numerical simulations of weather (wave and wind) conditions. The main outputs of the project will be 

the identification of specific risk measures capturing the main aspects of hazardous material transportation 

in the programme area, the design and development of a multimodal safest routing algorithm for dangerous 

                                                           
4 https://www.italy-albania-montenegro.eu/index.php/programme/south-adriatic-2021-27/south-

adriatic-docs  

5 https://crisis.italy-albania-montenegro.eu/  

https://www.italy-albania-montenegro.eu/index.php/programme/south-adriatic-2021-27/south-adriatic-docs
https://www.italy-albania-montenegro.eu/index.php/programme/south-adriatic-2021-27/south-adriatic-docs
https://crisis.italy-albania-montenegro.eu/
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material transportation in the programme area, and the design and development of a berth allocation 

algorithm for hazardous material transportation in the programme area. 

The specific objective of the CRISIS project is to improve the programme area's transportation activities, 

emphasising the transport of hazardous materials. The project will study the peculiar risks in the programme 

area, aiming to develop novel decision support modules aiming to assist cross-border management of 

hazardous materials [2]. 

 

2.2 Beneficiaries 

 

The main beneficiaries are listed below: 

• Città di Molfetta (IT)6,  Lead partner 

• FLAG Molise Costiero7 (IT),  project partner and  

• Municipality of Ulcinj8 (ME), project partner and  

• National Environment Agency (AL), associated partner. 

However, the benefit from the project will have the whole society in the programming area, where the action 

is taking place.  

 

2.3 Description of the assignment and tasks 

 

In order to ensure the smooth i implementation of the project and tasks, in line with the approved 

application form, CRISIS project partners have engaged external experts to support the spread of project 

activities, results, and outputs to the Programme area and beyond. 

According to ToR following objectives must be achieved: data collection and analysis of the problems of 

routing hazardous materials inside the ports, and the surrounding areas, monitoring and supporting passing 

ships and allocating ships carrying dangerous materials to berths according to the approved  Application Form 

of the project CRISIS „Cross-border RISk management of hazardous material transportation“. 

The requested services are divided into four activities and presented below. This deliverable covers the tasks 

under activity A.T1.4 “Berth allocation algorithm design”.  

 

                                                           
6 https://www.comune.molfetta.ba.it/  

7 www.Flagmolise.it  

8 www.ul-gov.me  

https://www.comune.molfetta.ba.it/
http://www.flagmolise.it/
http://www.ul-gov.me/
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2.3.1 Activity A.T1.1 - Data collection and analysis 

 

This activity aims to analyse the problems of routing hazardous materials inside the ports and surrounding 

areas, monitoring and supporting passing ships and allocating ships carrying dangerous materials to berths 

[2]. The goal is to identify the peculiar problems and to collect data related to the different ports and areas 

where the proposed methodologies could be implemented.  

This activity performs maritime traffic analysis in the programming area and data related to maritime 

dangerous cargo transportation in Albania, Italy and Montenegro.  

 

2.3.2 Activity A.T1.2 - Definition of specific risk measures 

 

This activity will define specific risk measures to consider when designing the models and algorithms. 

In the frame of this activity, data on previous incidents while handling dangerous cargo in the programming 

area and Montenegro will be performed. Based on historical data, specific risk measures will be proposed. 

 

2.3.3 Activity A.T1.3 - Multimodal safest path algorithm design 

 

The aim of this activity is to develop models and algorithms to route shipments in the transportation network 

in such a way that, not only travel cost is reduced, but also transportation risk is minimized. In fact, in order 

to carry some hazardous goods from an origin to a destination, the path with the minimum travel cost may 

not always correspond to the minimum-risk route (i.e., the safest path). The models should include explicitly 

real-time information about the weather and sea conditions. 

 

2.3.4 Activity A.T1.4 - Berth allocation algorithm design 

 

The berth allocation problem aims to optimally assign and schedule ships to berthing areas along a quay. The 

objective is the depreciation of the total (weighted) service time for all ships, defined as the time elapsed 

between the arrival in the port and the completion of handling the minimisation activity. It includes the 

estimate of the downtime due to wave and wind action at a particular berth. 
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2.4 Required output and deliverables 

 

In the frame of T1 following four deliverables will be prepared and listed and shortly explained in the 

following subchapters.  This document is actually the deliverable D.T1.1.3 described in subchapter 2.4.3. 

 

2.4.1 Deliverable D.T1.1.1 - Data analysis report  

 

A report with a preliminary analysis aimed at making sense of the data collected in order to highlight the 

peculiarities and critical aspects of hazardous transportation in the programme area. 

The desk research is conducted, and data collection is performed on the maritime transport and transport of 

dangerous cargo in the program area.  

 

2.4.2 Deliverable D.T1.2.1 - Risk measures report 

 

A report on specific risk measures capturing the main aspects of hazardous material transportation in the 

programme area. 

The desk research and data collection will be performed on previous incidents and potential risks during the 

maritime transport of dangerous cargo in the program area.  

 

2.4.3 Deliverable D.T1.3.1 - Multimodal safest path algorithm design report 

 

A report on designing the multimodal safest routing algorithm for hazardous material transportation in the 

programme area.  

 

2.4.4 Deliverable D.T1.4.1 - Berth allocation algorithm design report 

 

A report on the design of the berth allocation algorithm for hazardous material transportation in the 

programme area.  The results will be presented in this deliverable.  
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3 LITERATURE REVIEW OF BERTH ALLOCATION PROBLEM (BAP) 
 

 

The efficient utilization of port resources is a nowadays a challenge for maritime logistics and port 

management in congested ports. Among the various challenges faced by modern port terminals, the Berth 

Allocation Problem (BAP) emerges as a critical issue affecting the operational efficiency of a port and, 

consequently, the entire supply chain. Berth allocation is the act of assigning incoming ships to specific berths 

for cargo operations over a planned time horizon. The problem is complex, encompassing several 

considerations such as time windows, various ship sizes, types of cargo, and resource constraints. This 

literature review aims to provide a comprehensive overview of the Berth Allocation Problem, discussing 

market and social needs for BAP, BAP in context of environmental safety, np-completeness of BAP, BAP 

classification, continuous vs discrete berthing layout, static vs dynamic vessel arrival and generic problem 

definition and formulation.  

The BAP has been a subject of academic interest for several decades. Early research in the field, primarily in 

the 1970s and 1980s, focused on static models that aimed at optimizing a single objective such as minimizing 

total service time or waiting time. However, the field has seen significant evolution over the years, leading 

to increasingly complex models that consider multiple objectives and constraints, including environmental 

factors. 

Studies on BAP can be categorized based on various factors like problem environment (static vs. dynamic), 

number of objectives (single vs. multi-objective), and type of berth layout (continuous vs. discrete). Each 

category brings its own set of complexities and requires different solution methodologies. 

Linear programming, integer programming, and mixed-integer programming are some of the popular 

mathematical techniques employed to model the BAP. More recently, stochastic and robust optimization 

models have been introduced to account for uncertainties in arrival times, loading/unloading rates, and other 

parameters. 

Solution methods for the BAP range from exact algorithms like branch-and-bound to heuristics and 

metaheuristics such as Genetic Algorithms, Simulated Annealing, and Particle Swarm Optimization. Hybrid 

methods that combine the strengths of various algorithms have also been proposed. 

The Berth Allocation Problem does not exist in isolation but is closely integrated with other port operations 

like quay crane scheduling, yard allocation, and ship routing. Studies that examine BAP in the context of these 

other problems offer a more holistic view of port operations optimization. 

Understanding the intricacies of the Berth Allocation Problem is essential for both researchers and 

practitioners in maritime logistics and port management. This literature review serves as a starting point for 

anyone interested in gaining a deeper insight into the subject, providing a comprehensive discussion of its 

various aspects and the solution techniques that have been proposed over the years. 

In the subsequent sections, each of these topics will be explored in greater detail to offer a well-rounded 

understanding of the state-of-the-art in Berth Allocation Problem research. 
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3.1 Market and Social Needs for Berth Allocation 

The Berth Allocation Problem (BAP) is a crucial challenge in port management with wide-ranging implications 

beyond operational concerns. Efficient berth allocation is key to boosting a port's economic competitiveness, 

as it reduces ship turnaround times and attracts more business. Environmentally, optimizing BAP can mitigate 

issues like air pollution by reducing ship idling. In terms of operational resilience, effective berth allocation 

enables ports to recover swiftly from disruptions, maintaining stability in supply chains and market 

operations. Considerable traffic loads with increasing waiting and handling times can lead to reduced 

productivity of port and can lead to serious local environmental problems such as noise and harmful 

emissions [3]. 

Furthermore, it has social benefits by creating job opportunities and improving community relations through 

reduced negative externalities like noise and air pollution. Lastly, efficient berth allocation aids in meeting 

regulatory compliance, positioning ports favourably for sustainability incentives. Therefore, tackling BAP is 

essential not only for improving port operations but also for addressing broader market and social needs. 

As an example we can mention Maritime Container Terminal (MCT) that serves as an important node in the 

shipping industry to deal with increasing sea trade.  A report presented by Barbosa et al. [4] stated that 

worldwide ports handled almost 701 million twenty-foot equivalent units (TEUs) of containers in 2016. At 

the same time, the throughput of container ports is also continuously increasing, and the management of 

MCTs’ operations is becoming a challenging task. MCT operations can be categorized into three major 

operational areas, namely seaside, land-side, and yard-side operations. In the ideal scenario, as soon as a 

vessel arrives at the MCT, it should be moored at its preferred berthing position.  If the MCT cannot 

serve the vessel at the time of arrival, the vessel must be towed to the waiting area of the terminal. 

As a result of the increased number of ships in the waiting area, congestion and navigational 

challenges are created at the seaside of the terminal. 

Based on information from the UNCTAD Report of Maritime Transport [1], container berth productivity has 

several constraints among which the most important is the growing volume of containers exchanged in vessel 

calls during peak hours. In this publication, it is indicated that the deployment of larger vessels and company 

alliances have direct impacts on the quantity of the containers exchanged per ship call, which causes 

additional pressure on ports’ handling capacities. In fact, the need to handle more containers at the same 

time exerts pressure on berth and yard operations, and this is the reason why so many research efforts are 

put into solving the problem of adequate allocation and assignment of terminal facilities and assets. 

Facing these challenges, the Bert Allocation Problem (BAP) can be defined as a mathematical approach to 

finding the optimal solution for the time and place to berth a vessel that needs the available containers 

onboard to discharge, handle, store, and allocate on the container yard. In fact, the BAP focuses on assigning 

the adequate berth position to the vessel based on the characteristics of the berths (e.g., length, depth) and 

vessels (e.g., dimensions, draft) [5]. For this purpose, the berth allocation of ships according to their arrival 

and departure time, size of the ship, dimensions, and technical features are the most important factors in 

the optimization of BAP. The factors represent the technical constraints in the form of variables for 

mathematical modelling using advanced algorithms in the search for an optimal solution and allocation of 

berths and cranes [6]. Apart from BAP, for the seaside operations, there are two additional well-known 

operational problems, i.e., quay crane assignment problem (QCAP), and quay crane scheduling problem 

(QCSP). 
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It is obvious that such a complex problem like BAP should be solved in the most effective and efficient way 

and therefore this has significant implications for market and social needs for optimal berthing. The market 

needs dimension is reflected through several aspects that comprise mainly the criteria of efficiency as well 

as adequate utilization of available resources and assets. This would enable optimal berthing time for vessels 

that are calling the port and the best berthing position for each vessel that is coming to the container 

terminal. In that sense, the market needs of container shipping companies are directed towards optimization 

of all services and times for processing the container units, because any delay in delivery of goods from 

containers, due to a plethora of reasons, could be a significant cost for shippers and companies. Therefore, 

the concept of “just in time” (JIT) is of utmost importance to all stakeholders in the supply chain. Also, the 

improvement of container terminal operations and management efficiency, under size and resource 

constraints is a key to enhancing the economic performance and core competitiveness of container 

terminals. The results of the good berth allocation strategy are the rise of economic efficiency of port 

scheduling and increased customer satisfaction [7].   

The social needs are fully correlated and dependent on the above-mentioned market needs. Indeed, optimal 

allocation of berths and management of goods transfer impact the stability of transport flows enabling 

positive social effects. So, if markets are supplied by on-time deliveries from ports and intermodal terminals, 

the level of supply and demand for transported goods will be in balance and the opposite, if the market is 

not enough covered with goods, the demand will move to areas, cities, and hubs where the supply is regular, 

making the impact on social dynamics. 

To match all these requirements, the BAP is formulated in the sense that the berthing time is equal to the 

arrival time for each vessel, and in solving this model, a berthing position is found that minimizes the 

maximum quay length required to serve vessels in accordance with the schedule, as proposed by Lim (1998) 

[8].    

 

3.2 Berth Allocation in context of environmental safety 

Efficient berth allocation is not just an operational necessity for ports but also a critical factor in promoting 

environmental safety. Poorly managed berth allocation can lead to extended ship idling and congestion, 

contributing to increased emissions of pollutants such as sulphur dioxide, nitrogen oxides, and particulate 

matter. These emissions pose environmental risks, impacting both local air quality and contributing to 

climate change. By optimizing the Berth Allocation Problem (BAP), ports can significantly reduce ship idling 

times and, consequently, minimize emissions. This not only aligns port operations with broader goals of 

environmental sustainability but also helps ports to comply with environmental regulations and standards. 

Therefore, solving BAP effectively plays a pivotal role in enhancing environmental safety in and around port 

areas. 

One of the most recent advanced concepts for connecting all key assets and components of the maritime 

supply chain in an innovative way is the Internet of Ships (IoS). It is widely known the concept of the Internet 

of Things (IoT) for the interconnection of a huge number of sensors and data sources, and the Physical 

Internet (PI) for logistics. Building on similar concepts such as e-navigation and advancement of various IoT 

technologies, the IoS in an intelligent way interconnects the maritime physical device or infrastructure 

associated with a ship, a port, or the transportation itself, including cranes, containers, the bridge navigation 

system, the ship engine, buoys, or even smartphones carried by key personnel, as summarized by Aslam et 
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al. (2020) in [9]. This concept comprehends three key areas such as smart ships, smart ports, and smart 

transportation, but in this section, the focus is on the automatic berthing as part of smart port terminals. The 

maritime IoS comprises several layers in its architecture dedicated to sensing, heterogeneous network 

establishing, data computation, service, and application as well as exhibition for data visualization and 

sharing. Following this approach, automatic berthing is an advanced step within autonomous shipping, but it 

should be more developed in the future. The automatic berthing is based on an Artificial Neural Network 

(ANN) with uses of non-linear programming for optimal steering when a berthing process begins. This 

approach also included the possibility of an IoS system to find vacant positions on the shore and to send 

information to ships about available locations for berthing. This is done by using sensing layers in IoS and 

afterward the data computation layers for location and finally the application layer using the Android 

application named “Smart-Ship-Berthing”, as described by Kamolov and Park (2018) [10] .  Due to its 

comprehensiveness and automation, all these approaches significantly contribute to increasing the 

environmental safety and in general safety of navigation in the port as well as berthing on seaside. 

 

3.3 NP-Completeness of Berth Allocation  

The Berth Allocation Problem (BAP) is often categorized as an NP-complete problem, indicating its 

computational complexity and the challenge it poses for finding optimal solutions in polynomial time [11]. 

The BAP is an important maritime problem in port logistics , and a well-known as NP-hard problem whose 

solution has challenged researchers worldwide [12]. 

In computational complexity theory, a problem is NP-complete when fulfils several criteria. Firstly, when it is 

a decision problem, meaning that for any input to the problem, the output is either "yes" or "no". Secondly 

when the answer is "yes", this can be demonstrated through the existence of a short (polynomial length) 

solution. Also the correctness of each solution can be verified quickly and a brute-force search algorithm can 

find a solution by trying all possible solutions. Lastly the  problem can be used to simulate every other 

problem for which we can verify quickly that a solution is correct. It means that NP-complete problems are 

the hardest of the problems to which solutions can be verified quickly9.  

The NP-completeness of BAP implies that as the problem size grows—considering factors such as the number 

of berths, ships, time windows, and other constraints—the computational effort required to find an optimal 

solution grows exponentially. This makes it impractical to solve large instances of the problem using exact 

algorithms within a reasonable time frame. The NP-completeness of BAP is not just a theoretical concern but 

also has practical implications for real-world port operations where timely and efficient solutions are critical. 

This complexity underscores the importance of developing efficient heuristics, metaheuristics, or 

approximation algorithms capable of producing near-optimal solutions quickly, especially in dynamic and 

uncertain port environments. 

As evidenced by relevant literature, the Berth allocation is the nondeterministic polynomial-time (NP)-hard 
problem and it is related to the set of partitioning problems together with single machine scheduling 
Problems and two-dimensional cutting stock problems. Also, together with BAP, the closest problem related 
to port terminal management is the Quay Crane Assignment and Scheduling Problem (QCAP and QCSP), 
which represent the NP-hard problem in the strong sense, because it considers situations with more than 

                                                           
9 https://en.wikipedia.org/wiki/NP-completeness  

https://en.wikipedia.org/wiki/NP-completeness
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two cranes on the seaside and non-uniform processing times given for ships [13]. To summarize the main 
components for both optimization problems, Figure 1 comprising all these inputs is given below. In the 
literature overview, two different versions of the problem called the discrete (BAP-D) and the continuous 
(BAP-C) cases, can be abstracted and both of them are classified as NP-hard problems.  
 

 
Figure 1  Sequential planning of seaside operations  

(Source: [13]) 

To solve the three problems together, a three-stage procedure is proposed in the paper of Hsu, Wang et al., 
(2017) [14], which proposed an approach for modelling and solving the seaside operational problems (BAP, 
QCAP, QCSP) by using Object-Oriented and Timed Predicate/ Transition Net (OOTPr/Tr). In the beginning 
stage, a vessel is allocated to the berth with some constraints. In the next stage, quay cranes are assigned to 
the berths. In the third stage, the beginning time of operation/process and its ending time are estimated for 
each ship and task with respect to the constraints for this phase. This approach is shown in the following 
Figure 2, as representation of a graphical tool method that has been employed in this research, and termed 
an OOTPr/Tr net, to model and solve three seaside problems at the same time. 
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Figure 2 The input and output of the three‐level framework of heuristics for simulation  

(Source [14]) 

 

3.4  Berth Allocation classification 

The Berth Allocation Problem (BAP) can be classified along multiple dimensions that capture its inherent 

complexities and constraints.  There are many articles related to BAP in the literature. In order to acquire a 

better understanding of these papers it is necessary to have general information about different types of 

BAPs [15].  

One common way to categorize BAP is based on the problem environment, distinguishing between static and 

dynamic scenarios. In a static BAP, all information such as ship arrivals and service times is known in advance, 

whereas in a dynamic BAP, these variables are subject to change and uncertainty.  

Another important classification is based on the number of objectives being considered: single-objective 

versus multi-objective BAP. While single-objective problems focus on optimizing a specific metric, such as 
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minimizing total turnaround time, multi-objective problems aim to balance various goals like cost, time, and 

environmental impact.  

The type of berth layout also offers another categorization, typically bifurcated into continuous and discrete 

models. Continuous models allow for any point along the quay to be a potential berth position, while discrete 

models work with predefined berthing positions. Both discrete and continuous BAP has been studied in the 

literature. The overall classification is illustrated in Figure 3. 

 

Figure 3 - Berth Allocation Problem Classification 

(source [15]) 

 
Authors Carlo et al., (2015) in [5] made some modifications to Bierwirth and Meisel model presented in 
papers [13] and completed the BAP classification scheme presented in Table 1 BAP Classification scheme 
modified from Bierwirth and Mesisel (Source ) as given below.  
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Table 1 BAP Classification scheme modified from Bierwirth and Mesisel (Source [5]) 

 
 

These classifications are crucial for determining the appropriate mathematical models and solution 

approaches suitable for tackling various instances of the BAP and will be further elaborated in next 

subchapters. 

3.4.1 Continuous vs Discrete Berthing layout 

The berthing layout in the Berth Allocation Problem (BAP) is commonly classified into two types: continuous 

and discrete. In some literature we have also Hybrid Layout which will be elaborated here [13]. In order to 

better understand classification of BAP, general information about different types is needed. In one aspect 

the BAPs can be divided into two main classes; the continuous and the discrete BAP. In the discrete BAP, a 

dock has limited number of berths which can  accept only one ship. In the continuous type of problem a ship 

can choose its position of the dock if its length is less than the length of unused section of the berth. It means 

that using a berth in a continuous form would lead to a better utilization, comparing with the discrete 

allocation [15]. 

In a continuous berthing layout, ships can be allocated to any point along the quay, providing a flexible but 

computationally complex scenario. This approach often requires solving optimization problems that can take 
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into account variable positioning and spacing between ships, leading to potentially more efficient use of 

space but at the cost of increased computational effort. For this layout, there is no partitioning of the seaside 

for berthing the vessel and it is possible to allocate all arrived ships with no limitations on the length 

dimensions they have, since there is no dedicated berth for a specific category of the vessel and vessels can 

be moored within the boundaries of the quays. Authors Bierwirth and Meisel argue in [13] and [16] that 

management and planning on this kind of terminal is more complex than for the discrete layout of the 

container terminal. According to this layout, vessels can moor anywhere in the quay space, but spatial 

restrictions must be considered, as for example the size of the ship. Several authors provided some different 

approaches for solving this problem, among them are: mixed integer-programming model (MIP) solved using 

Simulated Annealing (SA), heuristic procedure for BAPC, mixed integer non-linear programming, greedy 

randomized adaptive search procedure, stochastic beam search method, an Immune Algorithm (IA), a 

neighbourhood search heuristic and a particle swarm optimization algorithm, as summarized by Sahin et al., 

(2016) in [17]. Apart from mentioned approaches, the cited authors propose a new method called Differential 

Evolution Approach (DE) which is successfully employed on continuous space problems, with aim to 

investigate the performance of DE method on Dynamic BAP Continuous layout. 

On the other hand, in a discrete berthing layout, the quay is divided into predefined sections or berths, and 

ships must be allocated to one of these fixed positions. While this simplifies the allocation problem and often 

makes it quicker to solve, it might not fully optimize the use of available quay space and could result in 

suboptimal solutions. For this layout, the quay length is divided into several parts called berths and each part 

is dedicated to some category of ship length so that a vessel can be served at each single berth at the time. 

In fact, all berthing positions are predefined so that exactly one vessel can be assigned to each berth, 

regardless of its size. In solving the BAP for discrete layout, many authors propose different methods. For 

example, this problem is solved by using the following techniques: Tabu Search Heuristics, genetic algorithm-

based solution algorithm for BAPD in a multi-user container terminal, Lagrange Relaxation-based algorithm, 

heuristic based on k -best algorithm and clustering search based simulated annealing, as well as lambda- 

optimal based heuristic [17].  

 

Hybrid Layout combines the features of the previous layouts. It has dedicated berths like a discrete layout 

but the berthing is adapted to the current situation in the anchorage, e.g. if there is one large ship, her length 

can take more than a berth per one ship, and two smaller ships can share the position of one wider berth. In 

order to show the time and space relation for the berthing vessels and cranes assigned to them, the following 

Figure 4.  Space-time representation of a berth plan (a), assignment of cranes to vessels (b) gives the plan for 

mooring the vessels on berths upon their arrival, processing, and departure time. 

One of the most used methods for BAP is the heuristic solution model which solves a discrete BAP first and 
then improves the obtained solution by shifting vessels along the quay as allowed in the continuous BAP, 
being extended by incorporating the vessel draft in the berth allocation decision. The hybrid BAP is also 
analysed by several researchers with berthing areas defined at the tactical level tending to achieve robust 
berthing plans respecting the stochastic features of vessel arrivals.  
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Figure 4.  Space-time representation of a berth plan (a), assignment of cranes to vessels (b) 

(Source: [13]) 

 
Specifically, authors Ernst et al., (2017) in [18], propose a berth allocation problem (BAP) when the berth is 
considered as a continuous resource in an export Dry Bulk Terminal with tidal constraints defined as 
BAP_DBT. This approach considers the continual layout with limited length and set of vessels calling the port, 
but with different times of arrival and length of each vessel. A distinctive constraint in this model is the 
formulation of the existence of tides criterium which implies the dependence of vessel servicing upon the 
tidal low level, since the vessel can be loaded on low tide but to leave the port they need high tide. The 
objective of this approach is to minimize the sum of vessel completion times, or equivalently to minimize the 
total flow time over all vessels.  
 
The choice between layouts has significant implications for both the mathematical modelling and the solution 

techniques applicable for solving BAP. Continuous layouts often demand more sophisticated algorithms and 

models to capture their complexity, while discrete layouts may allow for simpler, yet less flexible, solution 

approaches. 

 

3.4.2 Static vs Dynamic Vessel Arrival 

In the context of the Berth Allocation Problem (BAP), temporal constraints are important for the optimal 

berthing of the vessels in container ports, so vessel arrivals can be categorized as either static or dynamic 

[13] [16], each presenting unique challenges and considerations for port operations. In a static scenario, all 

vessel arrival times, as well as their service requirements, are known in advance. This allows for the 

formulation of optimization models that aim for a single, optimal allocation of berths.  

In Static vessel arrivals there are no specific arrival times given to vessels but they are already in the port, at 

the time of the planning, and assume that all vessels have arrived at the port and wait for being served. While 

computationally more straightforward, static models may lack the flexibility to adapt to real-world 

uncertainties such as delays and varying service times. In the static arrival problem all the vessels to be served 

are already in the port at the time scheduling begins. In the dynamic arrival scenario not all the vessels have 

arrived, but ETA is known. The majority of the scientific papers in BAP considers the latter case [19].  
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In static vessel arrival, vessel handling time is considered as an input [20], [21].  In the dynamic vessel arrival, 

vessel handling is a variable and typically a function of the quay equipment operating on the vessel and the 

distance of the vessel’s berthing position from a location in the yard [22] [23]. 

Dynamic vessel arrival involves uncertain or variable arrival times and possibly changing service 

requirements. This demands a more adaptive and robust approach to berth allocation. Dynamic models need 

to be capable of re-optimizing the berthing schedule in real-time as new information becomes available. 

While providing greater adaptability, the computational complexity for dynamic scenarios is often higher, 

requiring more advanced optimization techniques or heuristics. Vessels come to the port at individual times 

imposing the constraint for the berth allocation. Other authors define the ‘dynamic’ berth allocation problem 

to recognize that the service time of a vessel when berthed may differ depending on the berth on the 

quayside at which it is serviced.  

Furthermore, the dynamic ship berth allocation problem is considered by De et al. (2020) in  [24] for vessel 

waiting time at the anchorage using the developed mixed integer linear programming model (MINLP). Also, 

compared to Block-Based Genetic Algorithm (BBGA), Genetic Algorithm (GA), and Particle Swarm 

Optimization (PSO), a  Chemical Reaction Optimization Algorithm (CRO) is developed to solve the stated 

problem for dynamic BAP large-scale realistic environment.  

The model for BAP, developed by Simrin and Diabat (2015) in [25], considers the dynamic arrival of vessels 

which allows vessels to arrive before or after the berthing plan is determined. The model, therefore, takes 

into consideration the constraint that a vessel cannot be serviced before its arrival. Moreover, all vessels in 

the presented problem must be completely serviced at one berth only without interruption from other 

vessels. The objective of the model is to minimize the total time of the whole service process for all vessels, 

which is the total duration of time vessels spend at a terminal between their arrival to the terminal and their 

departure. In order to maintain the solution’s feasibility, the model must satisfy the following constraints: 

1. Each vessel must be serviced exactly once and without interruption from other vessels. 

2. A vessel must be serviced at one berth only. 

3. A berth cannot handle more than one vessel at a time. 

4. A vessel cannot be berthed before its arrival. 

Here is applied the Genetic Algorithm (GA) which first generates a population of solutions, which is usually 

feasible and generated by the programmer. Then the evaluation of all solutions is done by calculating the so-

called fitness value of every solution in the generation, which reflects the level of goodness of the solution. 

The full GA process is given in Figure X. 
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Figure 5 Genetic Algorithms process 

(Source [25]) 

 

In cited research, for each solution, it was important to decide the values of the decision variables xijk. If that 

is known, then is possible to calculate the total handling and waiting time of all vessels of that solution. In 

order to calculate that by coding, it is taken into consideration the time berths become ready for service, the 

arrival times of vessels, as well as the handling times of vessels on different berths. 

As the conclusion, the distinction between static and dynamic vessel arrivals significantly influences the 

choice of mathematical models and solution methods employed for solving BAP, as well as the operational 

flexibility and efficiency level that can be achieved. 

 

3.5 Generic problem definition and formulation 

 

In optimization problems, including the Berth Allocation Problem (BAP), the generic problem definition and 

formulation provide the framework for understanding and solving the challenge at hand. The problem 

definition usually specifies the objective function to be optimized, whether it is to minimize costs, time, or 

other metrics. This is coupled with a set of constraints that outline the optimisation's limitations, such as 

resource availability, physical restrictions, or regulatory requirements.  

Formulation, on the other hand, translates this conceptual definition into a mathematical model. This often 

involves using techniques such as linear programming, integer programming, or mixed-integer programming, 

among others. The formulation captures the objective function mathematically and also encapsulates the 
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constraints in algebraic form. It serves as the basis for applying various solution methods, whether they are 

exact algorithms, heuristics, or metaheuristics. An example of analysis of the continuous berth allocation 

problem in container ports using a genetic algorithm is given in [26].  

The generic problem definition and formulation serve as the cornerstone for any optimization problem, 

providing the structure necessary for subsequent analysis, solution approaches, and interpretation of results. 

They help to clarify what "optimal" means in the given context and set the stage for the computational 

techniques that can be used to find the best possible solution within the specified constraints. 
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4 GENERAL BAP SOLVING METHODOLOGIES AND ALGORITHMS 
 

Solving the Berth Allocation Problem (BAP) involves various methodologies and algorithms, each suited to 

different types of BAP classifications like static vs. dynamic or continuous vs. discrete layouts. Broadly, these 

methodologies can be categorized into exact algorithms, heuristics, and metaheuristics. 

Exact Algorithms are typically employed for smaller instances of BAP where an optimal solution can be 

feasibly computed. Methods like Integer Programming and Branch-and-Bound are common in this category. 

They guarantee an optimal solution but often at the cost of high computational time, especially for larger 

and more complex problems. 

Heuristic Methods are rule-based methods designed to find a good solution quickly but without the 

guarantee of optimality. Common heuristics include First-Come-First-Serve (FCFS) or Nearest-Neighbour 

techniques. They are generally easier to implement and quicker to execute but may result in suboptimal 

solutions. 

Metaheuristic Algorithms are higher-level procedures that guide other heuristics towards better solutions. 

Methods like Genetic Algorithms, Simulated Annealing, and Tabu Search fall under this category. 

Metaheuristics are useful for tackling larger and more complex BAP instances where exact methods are 

impractical. 

The choice of methodology often depends on the specific requirements of the BAP instance at hand, including 

the size of the problem, the level of accuracy needed, and the computational resources available. Each 

approach has its advantages and drawbacks, and in many cases, a hybrid approach that combines elements 

of different methodologies may offer the most effective solution. 

 

4.1 Exact solution literature algorithms 

 

The literature on exact solution algorithms for the Berth Allocation Problem (BAP) primarily focuses on 

providing optimal solutions through mathematical formulations. These exact algorithms are particularly 

useful for smaller problem instances or scenarios where a guaranteed optimal solution is essential. Common 

techniques include Integer Programming (IP), Mixed-Integer Linear Programming (MILP), and Branch-and-

Bound algorithms. 

Integer Programming and Mixed-Integer Linear Programming often define the objective function—such as 

minimizing turnaround time or costs—along with a set of constraints that cover various operational 

limitations. IPs and MILPs are well-suited for BAP instances that can be linearized and provide a global 

optimum, but they often struggle with computational efficiency for large problem sizes. 

Branch-and-Bound Algorithms are designed to explore the solution space systematically, eliminating sub-

optimal solutions through bounding techniques. They are particularly useful when the problem involves 

multiple objectives or constraints that cannot be easily linearized. 
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The exact algorithms are highly reliable for finding the best possible solutions but come with the trade-off of 

computational intensity, making them less suitable for larger, more complex, or dynamic instances of BAP. 

Nevertheless, they set a benchmark for performance, against which heuristic and metaheuristic solutions can 

be compared. 

4.1.1 Mixed Integer Linear Programming 

Mixed-Integer Linear Programming (MILP) has emerged as a prominent tool in solving Berth Allocation 

Problems (BAP). The technique offers a framework for creating precise mathematical models that define the 

BAP objectives—such as minimizing docking time or operational costs—and the constraints that ports must 

operate under, like limited berthing space or specific safety measures. 

Among the exact solution algorithms, the distinguished place takes Mixed Integer Linear Programming as a 

very suitable method for optimizing the BAP. Following this approach, the authors Alsoufi et al., (2016) in [6] 

developed a Mixed Integer Programming model for BAP using the Genetic Algorithms (GA) simulated in 

MATLAB and calculations done in IBM ILOG CPLEX Optimization Studio (CPLEX), with the novelty that this 

model considers the solutions for robust berth plan, providing optimum berthing time, berthing position and, 

the enough time between the berthing times of vessels. They took into consideration the following 

assumptions in order to set up the model [6]: 

1. Every segment of the continuous wharf can handle only one vessel at a time; 

2. Safety distance between nearby vessels; 

3. Once the processing of the vessel starts the vessel leaves only after its processing has finished; 

4. A vessel can be handled anywhere in the wharf depending on its arrival time and the availability of wharf 

space. 

Many parameters and some binary variables have been defined, including the length of the wharf, estimated 

arrival time for a vessel, requested departure time for a vessel, estimated operation/processing time to 

handle the vessel, length of the vessel, the desired berthing position of a vessel (determined by the position 

of yard storage areas allocated to that vessel), tardiness cost of vessel and  Distance cost of a vessel for 

mooring, instability in arrival time of a vessel, etc. 

In the computational experiments, 20 instances of the mathematical model of Robust BAP with different 

numbers of vessels have been solved using B&C in CPLEX and GA. The test results of these computations 

were the average objective function and standard deviation of GA, which became closer to optimum 

solutions. These numerical results indicate that the hybrid met-heuristic method of combining the B&C 

(CPLEX) together with GA is superior to both of these particular methods and it contributes to finding 

solutions to all problems in acceptable time and accuracy for berthing activities. 

For dealing with BAP on an operational level, the authors Frojan et al. (2015) in [27], developed an integer 

linear model and then a genetic algorithm that works on sequences of vessels that are decoded by a 

constructive algorithm. To find the optimal solutions made by the genetic algorithm, they used the local 

search procedure. After extensive computational experiments, the optimal solutions in berthing the ships on 

both single and multiple quays were found together with the development of a random instance generator 

for the problem with multiple quays, for the study of the factors affecting such a complex problem. 
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Among other important applications Genetic algorithm are used for non-linear mixed integer programming 

problems and its applications [28]. Genetic Algorithms are largely used to solve the BAP and QCAP problems 

individually or simultaneously. As a novel approach, authors Hsu, Chiang, Wang et al. (2019) in [29] have 

proposed the three hybrid GAs (HGAs), which deal with the dynamic and discrete BAP (DDBAP) and the 

dynamic QCAP (DQCAP) simultaneously. The HGA firstly creates the solution for BAP an QCAP. This solution, 

which is time-invariant later becomes the variable and further processed towards optimized final solution. 

After investigations and experiments, the HGA showed superiority over traditional GA in term of fitness 

function. To better explain the functions of this approach, the following scheme in Figure 6  The procedure 

of hybrid genetic algorithms (HGAs) shows the procedure of related algorithms, where the DDBAP stands for 

Dynamic and Discrete BAP and DQCAP for Dynamic QCAP.  

 
Figure 6  The procedure of hybrid genetic algorithms (HGAs) 

(Source [29]) 

 
  
An important approach for reducing the costs of vessel berthing is proposed by Jos et al.(2019) in [30] 

focusing on the minimum cost berth allocation problem (MCBAP) at a container terminal where the maritime 

vessels arrive dynamically. This approach is classified under mixed integer linear programming (MILP) models. 

On the considered berth, vessels are berthed with an objective function that consists of optimized values for 

waiting for a time penalty, tardiness penalty, handling cost, and benefit of early service completion of vessels.  

Compared to other models, MCBAP performs its functions the best and with increasing the number of vessels 

and berths, it becomes robust and enables huge savings in computational cost. 

 
Below are most important features of MILP for BAP: 

• Optimization Goals: MILP excels in optimizing complex objective functions. In the case of BAP, these 

can range from minimizing the total berthing time to maximizing port throughput. 

• Constraints Handling: One of the key strengths of MILP is its ability to manage a wide array of 

constraints, making it especially useful for problems like BAP where spatial limitations, time 

windows, and safety protocols must be accounted for. 
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• Global Optimum: MILP guarantees the identification of global optimum solutions for smaller problem 

instances, making it a reliable method for generating the most efficient berthing schedules. 

• Computational Intensity: The downside of MILP is its computational burden, particularly for larger 

instances of BAP. However, it often serves as a benchmark for comparing other heuristic or 

metaheuristic methods. 

• Flexibility: MILP models can be adapted to accommodate various types of BAP, including those 

involving hazardous materials, multiple objectives, or dynamic arrivals of vessels. 

 

In summary, MILP provides a rigorous, adaptable, and comprehensive approach for solving BAP but may be 

computationally intensive for larger or more complex scenarios. Nonetheless, it sets a gold standard against 

which other methodologies and algorithms can be measured. 

4.1.2 Others solution 

While Mixed-Integer Linear Programming (MILP) has been a go-to approach for solving Berth Allocation 

Problems (BAP), various other methodologies and algorithms have gained traction, especially for large-scale 

or dynamic problems where MILP becomes computationally expensive. We will mention some of them: 

• Heuristic Methods: Algorithms like Greedy Search and Local Search offer quicker, albeit sub-optimal, 

solutions to BAP. They are particularly useful for real-time decision-making where rapid answers are 

needed. 

• Metaheuristic Approaches: Methods like Genetic Algorithms, Simulated Annealing, and Particle 

Swarm Optimization can navigate large and complex solution spaces effectively. They provide good-

quality solutions in relatively short computational times and can handle multiple objectives and 

constraints. 

• Dynamic Programming: Particularly useful for problems with staged decisions, dynamic 

programming can provide good solutions to BAPs, especially those that have temporal dimensions 

like time-windows and variable arrival rates. 

• Machine Learning Methods: Data-driven approaches, like Reinforcement Learning, can learn from 

historical data to make predictive berth allocations. These methods are growing in popularity due to 

their adaptability to changing conditions. 

• Hybrid Algorithms: Combining features from different methodologies can often yield algorithms that 

are both fast and accurate. For example, an initial solution may be generated using a heuristic and 

then refined using metaheuristic methods. 
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• Decomposition Techniques: For large-scale problems, decomposition methods like column 

generation or Lagrangian relaxation can be useful. These techniques break down the BAP into 

smaller, more manageable sub-problems. 

• Simulation-based Approaches: Monte Carlo simulations and other stochastic models can be 

employed to handle uncertainties in ship arrivals, durations, and other random factors. 

 

One of the other solutions that significantly contributed to BAP is the non-linear mixed integer programming 

model together with the stochastic beam search algorithm, proposed by Wang and Lim (2017) in [31] with 

the aim to minimize the costs of delay and reallocation of the assets on the terminal. This approach was 

tested in the case of Port of Singapore where more than 400 vessels in one hour were involved in simulation 

and evaluation. Given results of this approach, showed the superiority of the proposed method in comparison 

to the traditional beam search algorithm in terms of solution quality and the simulated annealing [5].  

An efficient terminal management requires the reducing time of ships spent in the port on the 

loading/unloading and other services, and therefore, the Port Collaborative Decision Making (PortCDM) 

concept is introduced by Lind, Michaelides et al (2019) in . The main contribution of this concept is the 

intelligent system that will improve port call data sharing and enable high-precision calculations of ships 

Estimated Time of Arrival (ETA) and Expected Time of Departure (ETD), which is of great significance for 

berthing operations and reducing the ship time in port in waiting queues at anchorage, as well as other 

bottlenecks related to berthing/unberthing and servicing on the docks. Port CDM enhances the planning of 

port calls and performs the coordination of standardized data sharing for spatial and temporal component 

optimization.  

Together with this approach, the same authors Michaelides, Lind et al.(2019) in [32], analysed the port to 

port communication enhancing short sea shipping performance related to the berthing/ unberthing 

processes for cruise and other ships including the case study of the Port of Limassol at Cyprus and general in 

Eastern Mediterranean. They found that efficient planning leads to higher use of port resources, which is an 

ecological gain, based on port to port communication that can be used to improve their performance with 

respect to the principles of PortCDM.   

An interesting approach was made by Xi et al. (2017) in [33], conceptualizing the bi-objective robust berth 

allocation model (BRBAM), that aims to determine where and when vessels should be moored to minimize 

the total cost of berthing allocation and maximize customer satisfaction. Its focus is on economic 

performance and customer satisfaction, aiming to optimize the robustness of the berth allocation policy. For 

this purpose, an adaptive grey wolf optimizer (AGWO) algorithm is developed to solve the proposed model.  

The GWO is a simple algorithm with few parameters but is competitive with other meta-heuristic algorithms, 

such as genetic algorithm (GA) and differential evolution, and is mostly used to optimize the continuous berth 

layout and environment. Finally, the proposed method for BAP optimization is applicable to realistic 

environments that include unforeseen events and uncertain factors (i.e., deviation in arrival time and 

operation time).     
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In summary, there is a growing arsenal of alternative methodologies and algorithms that offer a range of 

trade-offs between computational speed and solution quality for solving BAP. These alternatives are often 

more suited for specific scenarios where MILP might not be the most efficient or feasible choice. 

4.2 Evolutionary Algorithms 

Evolutionary Algorithms (EAs) have gained notable attention as a viable approach for solving the complex 

Berth Allocation Problems. These algorithms draw inspiration from the mechanisms of natural evolution, 

such as selection, crossover (recombination), and mutation, to explore the solution space and optimize berth 

allocation strategies. 

De et al., (2020) in  [24] propose the Chemical reaction optimization (CRO) algorithm that is inspired by the 
thermodynamic laws of molecular reactions. This approach is a meta-heuristic algorithm, which is, in fact, 
the variable population-based evolutionary algorithm. This algorithm requires the initial solution with values 
of decision variables for various elements of the process of berthing including the number of quay cranes, 
container groups, handling time, specific vessel, and arrival and departure time, which will be later improved 
and optimized through the process when the values and fed into the “molecules” of the CRO algorithm. The 
flowchart representing this algorithm's steps is given in Figure 7. The following steps of the CRO algorithm 
are: 
 
1. The values of the objective function and constraints of the mathematical formulation is considered, 
2. Assigning initial values to parameters, 
3. Complex computation according to the objective function of a mathematical model, 
4.  Stopping criteria if maximum achieved and termination of algorithm, otherwise, it proceeds with 

execution of additional steps by setting conditions to population extent and performing search and 
comparison among obtained results, 

5. The obtained best solution of the iteration is compared with the global best solution. 
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Figure 7 Flowchart of chemical reaction optimization algorithm 

(Source [24]) 

 
A novel Evolutionary Algorithm is proposed by Dulebenets (2017) in [34] , whose purpose is to assist with 
berth scheduling at container terminals. The objective of this approach is to minimize the total weighted 
vessel service cost. The evolutionary algorithm applies a constant mutation rate value, determined from the 
parameter tuning analysis, and this characteristic is used as a parameter to evaluate its efficiency in a set of 
numerical experiments conducted evaluate the performance of the developed algorithm. It is proved that 
using this algorithm can significantly optimize the vessel service cost, large-size problem instances, and 
computational time. 
 

EA has following features: 

• Adaptability: One of the strongest features of EAs is their adaptability to different types of BAPs. 

Whether the issue involves multiple objectives, time-windows, or dynamic changes in vessel arrivals, 

EAs can be tailored to fit specific requirements. 

• Quality of Solutions: Although not guaranteeing global optimality like some exact methods, EAs often 

yield high-quality, near-optimal solutions, which are generally sufficient for most practical 

applications. 
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• Handling Complex Constraints: EAs are particularly proficient at managing multiple constraints that 

often arise in BAP, such as spatial limitations, safety protocols, and resource availabilities. The 

algorithms naturally evolve solutions that adhere to these constraints. 

• Computational Efficiency: Compared to methods like MILP, which can become computationally 

prohibitive for large-scale problems, EAs can provide quicker results. This is especially important in 

real-world scenarios where timely decisions are critical. 

• Robustness: Evolutionary Algorithms can handle uncertainties and dynamic changes effectively, 

making them robust solutions for a range of BAP scenarios. 

• Tuning and Customization: While EAs are flexible and adaptive, they also require careful tuning of 

parameters like mutation rates, crossover rates, and population sizes to ensure effective 

optimization. 

• Multi-objective Optimization: Evolutionary algorithms like the Pareto-based Multi-Objective Genetic 

Algorithm (MOGA) can simultaneously optimize multiple conflicting objectives, offering a range of 

solution alternatives for decision-makers to consider. 

In summary, Evolutionary Algorithms offer a highly adaptable, efficient, and robust approach for solving 

Berth Allocation Problems. They excel in scenarios that involve complex constraints and multiple objectives, 

providing quality solutions within a reasonable computational timeframe. 

4.3 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) has become increasingly popular as a methodology for solving Berth 

Allocation Problems (BAP). Originating from the simulated social behaviour of birds, fishes, and even human 

crowds, PSO uses a swarm of particles to explore the solution space and converge toward optimal or near-

optimal solutions. 

The swarm intelligence optimization algorithm is successfully applied to solve some optimization problems 

related to transport and logistics needs. Therefore, the authors Li, Xiao, Lei, Zhang, and Tian (2020) in [35], 

propose the combination of this algorithm with other methods to make a new Cuckoo Search (CS) extension 

with Q-Learning step size and genetic operator, namely a dynamic step size cuckoo search algorithm (DMQL-

CS). Compared with various CS algorithms and variants of DE, the results demonstrate that the DMQL-CS 

algorithm is a competitive to swarm algorithm. In addition, the DMQL-CS algorithm was applied to solve the 

problem of logistics distribution center location. The experimental results compared with those of other 

approaches demonstrated the superiority of the proposed strategy. A series of simulation experiments 

showed that DMQL-CS is more accurate and efficient than other evolutionary methods in terms of the quality 

and convergence rate. 

PSO has following features: 
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• Ease of Implementation: PSO is relatively easy to implement compared to some complex mathematical 

methods like Mixed-Integer Linear Programming (MILP). This ease has contributed to its rising popularity 

for solving BAPs. 

• Quick Convergence: PSO is known for its quick convergence to good-quality solutions, making it suitable 

for scenarios where timely decisions are crucial. 

• Handling Constraints: PSO can be adapted to manage various constraints present in berth allocation, such 

as limited space, time windows, and safety regulations, by penalizing solutions that violate these 

constraints. 

• Scalability: PSO algorithms are highly scalable, capable of handling BAPs for larger ports with multiple 

berths, various types of ships, and complex conditions. 

• Global Search Capability: Unlike some heuristic methods that may get stuck in local minima, PSO has the 

ability to explore the solution space more fully, providing a better chance at finding global or near-global 

optimal solutions. 

• Parameter Sensitivity: One challenge of using PSO is the sensitivity to the choice of parameters like swarm 

size, cognitive and social coefficients. Incorrect parameter selection can lead to suboptimal solutions or 

slow convergence. 

• Dynamic Adaptability: PSO can be adapted for dynamic BAP scenarios where conditions change over 

time, such as unpredictable ship arrivals or varying unloading times. 

• Multi-objective Optimization: Like other metaheuristic algorithms, PSO can be adapted to tackle multi-

objective problems, offering a balance between conflicting objectives like minimizing time and 

maximizing throughput. 

In summary, Particle Swarm Optimization offers an efficient, scalable, and adaptable approach to solving 

Berth Allocation Problems. While it may require careful tuning of parameters, its benefits in terms of speed 

and quality of solutions make it an attractive choice for tackling complex and dynamic BAP scenarios. 

 

4.4 Differential Evolution 

Differential Evolution (DE) has emerged as a potent algorithmic approach for tackling the complexities 

associated with Berth Allocation Problems (BAP). Originating from the family of evolutionary algorithms, DE 

is particularly effective at global optimization and has certain advantages over other metaheuristic and exact 

methods. 

Within the algorithms for solving BAP, the evolutionary algorithm proposed by Sahin and Kuvvetli (2016) in 

[17], which is called the differential evolution algorithm, is adapted to solve the dynamic continuous berth 
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allocation problem. This approach used ANOVA technique for analysis of test results, finding that crossover 

and F factors affect the fitness function significantly. This method is very useful because it enables 

calculations even when the number of ships is growing, having the methodology deviation from the optimal 

solution slightly and calculation time is still within a reasonable time frame. Since it is concluded that 

Differential Evolutionary Algorithm is very effective in generating optimal solutions for DBAPC, this approach 

can be employed for the simultaneous scheduling of other components of terminals. 

DE has following features: 

• Simplicity and Ease of Use: Differential Evolution is known for its straightforward implementation. This 

makes it an appealing choice for BAP scenarios where developing a complex mathematical model may 

not be feasible. 

• High-Quality Solutions: DE is effective in exploring the solution landscape and often yields high-quality, 

near-optimal solutions for BAP. While it may not guarantee an absolute optimum like some exact 

methods, it usually provides solutions that are practically useful. 

• Constraint Handling: DE can be adapted to manage the multifaceted constraints that are inherent to BAP, 

such as berth length limitations, time-windows, and safety considerations for hazardous materials. 

• Speed and Efficiency: Compared to more computationally intensive methods like Mixed-Integer Linear 

Programming (MILP), DE is often faster, especially for large-scale and complex berth allocation problems. 

• Global Search Capability: DE is known for its robust global search capabilities. This helps in avoiding local 

minima and makes the algorithm effective for complex and highly constrained problems. 

• Parameter Tuning: Like other evolutionary algorithms, DE does require some parameter tuning (e.g., 

mutation factor, crossover rate), but it is generally less sensitive to parameter settings compared to some 

other methods like Particle Swarm Optimization (PSO). 

• Adaptability: The algorithm can be easily adapted for various forms of BAP, whether it's static or dynamic, 

single-objective or multi-objective. 

• Stochastic Nature: Due to its stochastic nature, DE can also be useful in scenarios where there is 

uncertainty in vessel arrival times, loading/unloading durations, and other variable factors. 

In summary, Differential Evolution offers a robust, efficient, and adaptable method for solving Berth 

Allocation Problems. Its simplicity, speed, and ability to deliver high-quality solutions make it a strong 

candidate for addressing the complexities and constraints inherent in BAP scenarios. 

4.5 Other heuristic or metaheuristic solutions  

Beyond popular metaheuristics like Particle Swarm Optimization and Differential Evolution, a variety of other 

heuristic and metaheuristic approaches are available for solving Berth Allocation Problems. These alternative 

methods offer unique advantages and challenges, catering to different requirements of BAP scenarios. 
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Tabu Search as iterative method excels at escaping local optima by prohibiting certain solutions temporarily. 

It can be useful in solving highly constrained BAP scenarios, where typical heuristics might get stuck. It keeps 

a record (tabu list) of previous solutions to avoid revisiting them. Models of Tabu Search heuristics for the 

BAP are presented in [36]. 

Ant Colony Optimization is inspired by the foraging behaviour of ants. this algorithm is good at finding optimal 

paths and thus is suitable for BAPs that involve sequencing and scheduling of berths along a quay. In [11] BAP 

is formulated as a permutation-based combinatorial optimization problem and the paper suggests an 

improved Ant Colony algorithm to solve it. 

Multi-objective genetic algorithm (moGA) is based on NSGA-II algorithm  for the maximization of operational 

efficiency and minimization of cost. It is developed for solving the bi-objective model by using a two-part 

representation scheme. The algorithm is developed by Hu in 2015 [37] and considers the sensitivities of the 

algorithmic parameters and trade-offs between daytime preference and delayed workloads. The daytime 

preference indicates that berth allocation schedule should be mostly conducted during the day and just I few 

as possible cases at night, in order to save working comfort, safety, and energy consumption as well as to 

increase operational efficiency. 

Simulated Annealing  is inspired by the annealing process in metallurgy.  Simulated Annealing is a probabilistic 

technique that explores the solution space by occasionally accepting worse solutions to escape local minima. 

It is  known for its versatility, and offers a balance between exploration and exploitation of the solution space, 

making it a solid choice for various types of BAP. In [38] two efficient and effective simulated annealing (SA) 

algorithms are proposed to allocate vessels along the quay. SA algorithm is also used to minimize the vessel 

waiting time and berthing positions between pairs of vessels [13]. 

Greedy Algorithms provide heuristics quickly generate solutions by making the best local choice at each step. 

They are computationally efficient but might not always provide optimal solutions. Solving BAP for 10000 

vessels by a simple greedy algorithm can take only 4 seconds. Attentions should be paid to avoid possible 

bias of one greedy algorithm and use also other algorithms [39].  

Hill Climbing is a straightforward local search algorithm that is quick and simple but might get stuck in local 

optima. It's often used as a part of more complex algorithms to refine solutions. A probabilistic hill-climbing 

algorithm could be used to address also other single-source transportation problems [40].  In some scenarios 

to obtain the solution Late Acceptance Hill Climbing [41],  is applied which only accepts a solution if it is not 

worse than the solution evaluated iterations ago [42]. 

Random Search is suitable for problems with a large or poorly understood solution space. These methods 

can be computationally intensive but offer a wide-ranging search. In [43] a computationally efficient 

approximate solution method based on random search is proposed.  

Adaptive Large Neighbourhood Search (ALNS) is proposed by Mauri et al. (2016) in [44] as heuristic approach 

for both discrete and continuous models. After many experiments and computation processes, it can be 

concluded that this method provides high-quality solutions and outperforms competing algorithms for the 

same problem, with statistically significant improvements in all examined cases. The algorithm ALNS 

functions with the procedure that, at each iteration, the particular component of the algorithm destroys part 

of the current solution s and repairs it in a different way, generating a new and better solution s’, which is 

accepted according to a criterion defined by a search paradigm applied at the master level. Related to BAP-
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C, ALNS implementation provided the identification of 10 new best solutions in the first phase and the best 

solutions for all instances of the third set. 

Universal island-based metaheuristic algorithm (UIMA) is proposed by authors Kavoosi, Mikijeljević et al. 

(2019) [45], for the spatially constrained berth scheduling problem to be optimally solved. In this study, the 

emphasis is put on the exact optimization and metaheuristic algorithms that can be used to solve the Berth 

Scheduling Problem (BSP). Also, the UIMA refers to a method in which the population is divided into four 

sub-populations (which are also referred to as “islands”).  To search the islands, the four metaheuristics are 

assumed for this action, and they involve: 

(1) evolutionary algorithm (EA); 

(2) particle swarm optimization (PSO); 

(3) estimation of distribution algorithm (EDA); and 

(4) differential evolution (DE). 

The key steps of UIMA are illustrated in Figure 8. CPLEX and all the candidate metaheuristic algorithms were 

executed for all the developed small-size problem instances. The numerical experiments, conducted as a part 

of this study, demonstrate clearly the superiority of the developed UIMA algorithm over the population-

based and single-solution-based metaheuristic algorithms. 
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Figure 8. The basic UIMA steps 

(Source [45]) 

 

Hybrid Approaches combine different algorithms, which can often yield a method that leverages the 

strengths of each component. For example, a Genetic Algorithm can be combined with a local search method 

to enhance solution quality. Combining heuristics or metaheuristics with exact methods like MILP can result 

in algorithms that offer both speed and optimality. Work done in [46] presented a new hybrid column 

generation technique to solve the BAP. 

In summary, a wide array of other heuristic and metaheuristic methods exists, each with its own set of 

advantages and limitations. The choice of method should be dictated by the specific requirements of the BAP 

at hand, such as the size of the problem, constraints, objectives, and available computational resources.  
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5 DYNAMIC-ARRIVALS HYBRID BERTHING LAYOUT SAFE BERTH ALLOCATION 

PROBLEM (DH-SBAP) 
 

5.1 Specific Mathematical Formulation 

This work is primarily focused on the hybrid berthing layout with dynamic vessel arrivals, hence it will be 

referred as DH-BAP, which is more complex with respect to the scenario with static arrivals. The choice of 

hybrid berthing layout is taken due to the need of assigning a safety score to pre-determined berthing point 

in the whole quay which is difficult if applied with a high level of granularity. Hence, the hybrid layout comes 

from the division of the dock in a fixed number of berthing points, even if long ships are allowed to occupy 

more than one, if necessary. 

For formulation simplicity, the Maritime Container Terminal (MCT) is considered possessing one berthing 

layout with known length to accommodate vessels arriving at various time points dynamically. The set of all 

potential berthing positions on the wharf is denoted as 𝐵 =  {1, 2, … , 𝑀}. This simple case is extendable for 

each berth, even with wharfs with particular berthing configuration, with no or low effort. 

Typically, the BAP is tailored to a specific time frame for vessel arrivals, in this specific case a focus was put 

on the upcoming 24 hours (next day). This period is hence divided into a set of 30-minute time intervals 

denoted as 𝑇 =  {1, 2, … , 𝐾}. Each interval is accompanied by a weather assessment, detailing both wind 

and sea conditions expected during that specific time segment. 

The set 𝑆 =  {1, 2, … , 𝑁} encompasses all ships scheduled to arrive at the terminal on the following day. For 

each ship, crucial information is available beforehand, including the estimated time of arrival (ETA), preferred 

berthing position (PBP), ship's length, estimated (or requested) time of departure (ETD), and a cargo risk 

estimation based on the pollution risk posed by the transported products and their potential impact on 

marine life species. Moreover, estimated handling times for each ship were considered known in advance, 

being dependent on previous agreements between the MCT and the incoming ships, such as the number of 

quay cranes rented by the ship or number of containers to be loaded/unloaded during the handling period. 

In an ideal scenario (free wharf and good weather condition), as soon a ship arrives it would be allocated at 

the safest spot in the quay, immediately served and dismissed, respecting the handling times. If more ships 

arrive in the same interval, priority must be given to ships with higher cargo risk, reserving them the safest 

spots in wharf. Other ships are then allocated in less safe spots (if available) or have to wait for a safe spot to 

be available, based on both weather conditions, wharf availability and cargo risk assessment. In the end, in 

case of severe weather conditions, the algorithm should be able to trade-off handling speed and safety by 

delaying unsafe operations. 

Total risk cost for a ship arriving at the MCT is split in three different terms, two of which have the most 

impact: 

- Waiting Costs (WC) influenced by the total time a ship has to wait before being served (Waiting 

Time or WT), the average wave risk assessment for the WT and the ship’s cargo risk level. For 

waiting costs only wave risk is considered due to waiting areas often exposed to higher marine 

currents. Equation for waiting costs, expressed as [risk/hour] is the following: 
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𝑊𝐶 = 𝑊𝑤 ∗ [(𝐶𝑅𝑆𝑠 + 1)2 ∗ 𝑊𝑊𝐴𝑆] ∗ 𝑊𝑇𝑠 

Where: 

o 𝑊𝑤 is the waiting weight, expressed as cost per unit time, indicating how waiting is 

considered high on cost impacts on the overall cost 

o 𝐶𝑅𝑆𝑠 is the Cargo Risk Score of ship s 

o 𝑊𝑊𝐴𝑆 is the average Waiting WAve Score for that wharf in the waiting times 

o 𝑊𝑇𝑠 = 𝐵𝑇𝑠 − 𝐸𝑇𝐴𝑠; 𝐵𝑇𝑠 is the berthing time for the ship. 

 

- Handling Costs (HC) are influenced by the time necessary for a ship to be served once docked 

(Handling Time, HT), the average wind risk assessment for the whole period in which the ship is 

served, the ship’s cargo risk level and the berthing point safety assessment score. Since wharfs are 

usually protected from strong marine currents, only wind scores are considered for handling costs, 

being quay cranes operations riskier under severe wind conditions. Equation for handling costs is 

the following: 

𝐻𝐶 = 𝐻𝑤 ∗  [(𝐶𝑅𝑆𝑠 + 1)𝐻𝑊𝐼𝑆/𝐵𝑆𝑆] ∗ 𝐻𝑇𝑠 

Where: 

o 𝐻𝑤 is the handling weight, expressed as cost per unit time, the index on how handling costs 

impact on total cost 

o 𝐻𝑊𝐼𝑆 is the average Handling WInd Score for that wharf during the whole handling period 

of the ship 

o 𝐵𝑆𝑆 is the Berth Safety Score, assigned to a berthing point based on its positioning on 

wharf and its exposure to sea and winds 

 

- Late Departure Costs (LDC) are influenced only by the time a ship exceeds its expected departure 

time. This difference is computable as: 𝐿𝐷𝑇 =  𝐸𝑇𝐷 − (𝐸𝑇𝐴 + 𝑊𝑇 + 𝐻𝑇) and it can assume also 

negative values, resulting in an incentive towards fast ship handling. Equation is the following one: 

𝐿𝐷𝐶 = 𝐿𝐷𝑤 ∗ 𝐿𝐷𝑇𝑠 

Where 𝐿𝐷𝑤 is the late departure weight expressed as cost per unit time indicating how early or late 

departure impacts on the total cost. 

Hence, the overall cost equation for a single ship can be expressed as following, considering a ship 𝑠, berthed 

at time 𝐵𝑇𝑠 and in berthing position 𝐵𝑃𝑠, waiting under average wave conditions 𝑊𝑊𝐴𝑆 and being served 

under average wind conditions 𝐻𝑊𝐼𝑆: 

𝐶𝑜𝑠𝑡(𝑠, 𝐵𝑃𝑠, 𝐵𝑇𝑠, 𝑊𝑊𝐴𝑆, 𝐻𝑊𝐼𝑆) = 𝑊𝐶 + 𝐻𝐶 + 𝐿𝐷𝐶 

The goal of the berth allocation problem is to find the optimal berthing position and times for all ships coming 

at the planning horizon such as the overall cost is minimized: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑  

𝑠∈𝑆

∑  

𝑏∈𝐵

∑  

𝑡∈𝑇

𝑥𝑠𝑏𝑡 ∗ 𝐶𝑜𝑠𝑡(𝑠, 𝐵𝑃𝑠, 𝐵𝑇𝑠, 𝑊𝑊𝐴𝑆, 𝐻𝑊𝐼𝑆) 

subject to [47]: 

[𝐶1] 𝑥𝑠𝑏𝑡 ∈ 𝟎, 𝟏               ∀𝒔 ∈ 𝑺, 𝒃 ∈ 𝑩, 𝒕 ∈ 𝑻 



 

 
D.T1.4.1 - Berth allocation algorithm design report 44 

 

 

[𝐶2] ∑  ∑ 𝒙_{𝒔𝒃𝒕}  =  𝟏                   ∀𝒔 ∈ 𝑺

𝒕∈𝑻𝒃∈𝑩

 

[𝐶3] 𝑩𝑻𝒔 ≥ 𝑬𝑻𝑨𝒔                                  ∀𝒔 ∈ 𝑺 

[𝐶4] |𝑩𝑻𝒔 − 𝑩𝑻𝒔′| ≥ 𝑺𝑬𝑻                       ∀𝒔, 𝒔′ ∈ 𝑺 

[𝐶5] 𝐵𝑃𝑠 + 𝐿𝑠 ≤ 𝑊                              ∀𝑠 ∈ 𝑆 

[𝐶6] ∑  ∑  ∑ 𝑥𝑠′𝑏𝑡

𝐵𝑇𝑠+𝐻𝑇𝑠

𝑡=𝐵𝑇𝑠−𝐻𝑇𝑠′+1

𝐵𝑃𝑠+𝐿𝑠

𝑏=𝐵𝑃𝑠−𝐿𝑠′+1𝑠′≠𝑠 ∈𝑆

 =  0                ∀𝑠 ∈ 𝑆 

[1] 𝑥𝑠𝑏𝑡 is a binary variable which takes value 1 if a ship 𝑠 is assigned to berthing position 𝑏 at 

berthing time 𝑡, 0 otherwise. 

[2] This constraint ensures that any ship is berthed only once during the planning horizon. 

[3] Third constraint ensures that ships cannot be served before their arrival. 

[4] Safety Entrance Time (SET) constraint ensures that two ships cannot be berthed 

simultaneously. Safety Entrance Time is included in the problem formulation and 

implementation since most ports welcome one ship at a time due to physical constraints at 

their entrance. 

[5] Length constraint is applied on the whole wharf, ensuring that all ships are allocated inside the 

physical dimension of the quay. 

[6] The last constraint ensures that, during planning, two ships cannot even partially overlap in 

either space and time: two ships cannot coexist in the same berthing point if they share the 

same handling time slots. 

 

5.2 Chosen algorithm: Cuckoo Search 

The Cuckoo Search Algorithm (CSA) is a powerful nature-inspired optimization technique that derives its 

inspiration from the unique reproductive behaviour of cuckoo birds. The inspiration for CSA comes from the 

brood parasitism strategy employed by certain species of cuckoo birds. These birds lay their eggs in the nests 

of other bird species, shifting the responsibility of incubating and caring for their offspring onto unwitting 

host birds. To survive, the cuckoo chicks must outcompete the host birds' own chicks for food and care. This 

concept of laying eggs in other birds' nests, combined with the need for cuckoo chicks to thrive in a 

competitive environment, served as the foundation for the Cuckoo Search Algorithm. In optimization terms, 

the "eggs" represent potential solutions to a problem, while the "nests" are the solution spaces. The objective 

is to find the best-fit solution by continually improving and replacing eggs in suitable nests.  

Introduced by Xin-She Yang and Suash Deb in 2009, CSA has gained widespread recognition and adoption in 

the field of optimization. Its appeal lies in its ability to effectively address complex optimization problems, 

particularly those characterized by multi-modal and non-linear search spaces. CSA operates as a population-

based optimization algorithm. It starts by initializing a population of "nests" or potential solutions to the 

optimization problem. Each nest represents a potential solution, and the quality of these solutions is 

evaluated based on an objective function. The algorithm then proceeds through a series of iterations, where 

cuckoos (representing new potential solutions) are introduced into the population. These cuckoos lay eggs 
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(representing potential solutions) in nests, with the quality of the eggs determined by their fitness. If an egg 

is of higher quality than the nest it is placed in, it replaces the previous content of that nest. CSA also 

incorporates mechanisms to maintain diversity in the population. It identifies the "worst" nests and either 

replaces them with new random nests or abandons them altogether. Simultaneously, the "best" nests are 

retained to ensure that the algorithm does not lose promising solutions. The process continues for a 

predefined number of iterations or until a termination condition is met. Throughout these iterations, CSA 

explores the solution space, gradually improving the quality of solutions, and eventually converging to an 

optimal or near-optimal solution. 

The time complexity of the Cuckoo Search Algorithm is a topic of interest, as it influences its practical 

applicability. CSA's time complexity depends on various factors, including problem size, the choice of 

parameters, and the complexity of the objective function. In general, CSA exhibits a moderate time 

complexity, often comparable to other metaheuristic optimization algorithms such as genetic algorithms and 

particle swarm optimization. The primary computational burden arises from the evaluation of the objective 

function for each nest (potential solution) and cuckoo (new potential solution). The algorithm's performance 

can vary significantly based on the problem's characteristics. In cases where the objective function is 

computationally expensive, CSA may require more time to converge. Additionally, the number of iterations 

and the size of the population influence the overall runtime. Efforts have been made to enhance CSA's 

efficiency, such as parallel implementations and hybridization with other optimization techniques. These 

adaptations aim to reduce the time complexity and accelerate convergence, especially for large-scale and 

computationally intensive problems. 

CSA offers several notable advantages that make it a valuable tool in the realm of optimization: 

- Global Search Capability: CSA's ability to explore extensive search spaces and locate global optima 

is one of its primary strengths. It excels in scenarios where the optimization landscape is complex 

and multi-modal, ensuring that it doesn't get trapped in local optima. 

- Simple Implementation: The algorithm's simplicity is a significant advantage. CSA's minimal 

parameter requirements and straightforward structure make it accessible to both researchers and 

practitioners. It can be readily implemented and customized to address a wide range of optimization 

problems. 

- Diversity Maintenance: CSA incorporates mechanisms for maintaining diversity within the 

population. By identifying and replacing the worst nests while preserving the best ones, the algorithm 

strikes a balance between exploration and exploitation. This feature reduces the risk of premature 

convergence and promotes the discovery of high-quality solutions. 

- Parallelization Potential: CSA's population-based approach lends itself well to parallelization. This 

means that it can harness the computational power of modern hardware, making it suitable for 

addressing computationally intensive optimization problems efficiently. 

 

While CSA offers several advantages, it is essential to consider its limitations: 
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- Parameter Sensitivity: CSA's performance is highly sensitive to the choice of parameters, including 

the population size, the termination criteria and parameters related to random generation of new 

solutions or deletion of less important ones. Tuning these parameters to achieve optimal results can 

be a non-trivial task and may require extensive experimentation. 

- Limited Scalability: CSA may encounter challenges when applied to very large-scale optimization 

problems. The population-based nature of the algorithm implies that it needs to maintain and update 

a considerable number of nests, which can be computationally demanding and resource-intensive 

for massive problem instances. 

- Convergence Rate: CSA, while effective at global exploration, may exhibit a slower convergence rate 

compared to some other optimization algorithms for certain problem instances. Achieving 

convergence to an optimal solution might require more iterations, making it less suitable for time-

sensitive applications. 

 

 

Figure 9: Example of pseudocode for Cuckoo Search Algorithm [48] 

Cuckoo Search Algorithm proved to be a more effective algorithm compared to Mixed Integer Linear 

Programming (MILP) or Genetic Algorithms (GAs) in [47], giving both faster responses and converging to 

optimal solutions better with respect to other metaheuristic algorithms. CSA  implements a series of 

mechanisms to improve exploration, such as the use of random walks or replacements of a portion of worst 

nests with the aim of generating new solutions. While random walks (levy flights) helps improving the 

solutions in the neighbourhood of previous ones, while nest replacement abandon worst solutions to explore 

new ones in the solution space. 
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Cuckoo Search proved its effectiveness in searching an acceptable local optima, often near the global one, 

even with multi-objective functions, such as the one formulated to include cargo loading/unloading risks and 

a highly-constrained search space like the one imposed by the berth allocation problem. 

 

 

5.3 Design and implementation details 

 

Cuckoo Search Algorithm was implemented using python 3.10.4 and deployed as an independent module 

with respect to the backend. It act as a service on calls, accepting an input and returning the planning. The 

code was organized in classes, modelling both the inputs and the solution. While implementing cuckoo 

search, several aspects were taken in account, such as: 

- Egg and Nest definitions: it was important to define, pragmatically speaking, the characteristic of an 

egg, meaning the shape of the solution. In the algorithm an egg was strictly related to a single ship, 

meaning that a nest is composed by N eggs, where N is the number of vessels taken in account in an 

execution. For each ship, both berthing time 𝐵𝑇𝑠 and berthing position 𝐵𝑃𝑠 were taken in account, 

as depicted by the cost function defined in Section 5.1. Hence, an egg is represented by a berthing 

point depending on the wharf and a time slot from those defined in the problem formulation. This 

adaption to the specific discrete use case, led to an egg structure similar to a hash map, basing the 

search space on the integer indexes of both the berthing points and the time slots. 

- Constraints definition: two major types of constraints were identified while developing the solution, 

namely egg-domain constraints and nest-domain constraints. The former are related to the placing 

of a single ship in the wharf, so constraints C1, C2, C3 and C5; constraints C4 and C6, instead, involve 

more than one ship in a solution. Defining constraints types was useful to control operations while 

executing the planning algorithm, avoiding unfeasible solutions. 

- Starting conditions: starting conditions are necessary for every evolutionary algorithm and adopting 

strategies allows them to converge as soon as possible. In the design of the cuckoo search algorithm, 

it was impossible to set a fixed starting conditions due to the variable nature of weather, ship arrivals 

and port structures. However, to avoid unfeasibility, starting population was forced to respect both 

nest and egg constraints. 

- Evolutionary strategy: as depicted in [47], using levy flights led to a fast-convergence algorithm. The 

same strategy was adopted here, further details will be provided later in this chapter. 

- Replacement strategy: two replacement strategy for cuckoo search were designed for the algorithm 

execution. The first one consisted in simply replacing the worst nests with new randomly generated 
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ones. The second replacement strategy implements a crossing over mechanisms where the resulting 

new nests are bred from two random nests in the whole solution space. 

- Hyperparameters tuning: once set the problem definition, one of the most important part for cuckoo 

search algorithm execution is defining its working mechanisms by setting algorithm 

hyperparameters. CSA convergence speed is highly influenced by its settings and finding an optimal 

configuration is often a trial and error workflow. The following list is a comprehensive set of 

hyperparameters already tuned to provide a high convergence speed: 

o N_nest = 100: size of the solution space, namely the total number of nests generated as 

population sample. Higher the number of nests, higher the chances to find an optimal 

solution but also the execution times. 

o N_iterations = 100: max number of iterations of the algorithm. Higher the iterations, higher 

the execution times but generally lower the global fitness score reached. To avoid reaching 

the maximum number of iterations with no improvement, an early stopping mechanism was 

designed to stop the algorithm if it does not improve overall fitness after 10 iterations. 

o pa = 0.65: fraction of worst nests to be deleted. Usually, in cuckoo search, this number is 

fixes at 0.25. Higher the fraction, higher the chances to find an optimal solution and the 

execution times. A too high value, however, can lead to convergence problems depending 

on the strategy used to replace abandoned nests. The value was set so high due to the trade-

off between execution times and constraint compliance. 

o max_tries = 2: maximum number tries for iteration to avoid generation operations to stuck 

in endless loops. This could happen if the nest is not able to produce a new solution due to 

constrains and number of ships. 

o levy_beta = 1.5, sigma_u = 0.6966, sigma_v = 1, c_multiplier = 1: set of hyperparameters for 

the levy flight operations from literature. Noteworthy the c_multiplier parameter which  

decides how much  the levy flight step influences the new solution, usually set to a fraction, 

but being set to 1 in this use case due to the particular solution structure. 
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Here, the following pseudo-code to document the most important modifications apported to cuckoo search 

algorithm for solving the DH-SBAP. Operation on eggs were mainly performed on two-sized arrays, containing 

the indexes of berthing points and time slot of the current solution. When the egg indices are modified by 

the algorithm, the resulting object field for berthing point and time slot are also filled. Each egg has the 

responsibility to compute its fitness score, based on the BAP environment (weather variables included in the 

time slots list). Nests fitness and all constraints, instead, are in charge of the berth allocation solver. 

Figure 10: Berth Allocation Algorithm with Cuckoo Search UML class diagram.  
Note: in this diagram, hyperparameters refers to the ones related to the levy flight and egg replacement operations. 
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Figure 11: Cuckoo Search Algorithm, CRISIS version 

 

Figure 12: CRISIS Cuckoo Search’s modified levy flight step 
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Figure 13: CRISIS Mixing Replacement Strategy. Egg operations should be treated as vector element-wise operations 

 

Figure 14 Cuckoo Search Replacement Strategy 

 

Among the two above-mentioned replacement strategy, the first one was kept, since it resulted in a better 

convergence rate and slightly lower execution times. Each time a new egg is generated or evolved from 

other ones, its fitness is evaluated against the whole nest: if the nest with the new egg has an overall 

fitness score lower than the previous one, the new egg is kept. The use of more nests ensures the algorithm 

to check for different optima in the solution space, trying different combinations.  
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Figure 15: Egg fitness score computing pseudocode, based on the fitness function formula above 

 

 

  



 

 
D.T1.4.1 - Berth allocation algorithm design report 53 

 

 

BIBLIOGRAPHY 
 

[1]  UNCTAD, "REVIEW OF MARITIME TRANSPORT 2018," UNCTAD, 2018. [Online]. Available: 

https://unctad.org/system/files/official-document/rmt2018ch4_en.pdf. [Accessed 31 August 2023]. 

[2]  CRISIS project Consortium, "CRISIS Application Form," INTERREG IPA CBC ITALY–ALBANIA–

MONTENEGRO PROGRAMME, 2ND CALL FOR PROJECTS IPA II CBC ITALY-ALBANIA-MONTENEGRO - 

TARGETED, Bari, Italy, 2022. 

[3]  Jahn, Carlos (Ed.); Kersten, Wolfgang (Ed.); Ringle, Christian M. (Ed.), "Digital Transformation in 

Maritime and City Logistics: Smart Solutions for Logistics," Proceedings of the Hamburg International 

Conference of Logistics (HICL), No. 28, [Online]. Available: 

https://www.econstor.eu/bitstream/10419/209197/1/hicl-vol-28.pdf. [Accessed 1 Spetember 2023]. 

[4]  Barbosa F, Rampazzo PCB, Yamakami A, Camanho AS, "The use of frontier techniques to identify 

efficient solutions for the berth allocation problem solved with a hybrid evolutionary algorithm," in 

Comput Oper Res. 2019;107:43–60..  

[5]  Carlo HJ, Vis IF, Roodbergen KJ., "Seaside operations in container terminals: literature overview, trends, 

and research directions," vol. Flex Serv Manuf J. 2015;27(2 3):224–62..  

[6]  Alsoufi G, Yang X, Salhi A. , "Robust berth allocation using a hybrid approach combining branch-and-cut 

and the genetic algorithm.," International Workshop on hybrid metaheuristics, (Springer). 2016; p. 187–

201..  

[7]  Xiang Xi, Liu C, Miao L. , "A bi-objective robust model for berth allocation scheduling under 

uncertainty.," Transp Res Part E Logist Transp Rev. 2017;106:294–319..  

[8]  A. Lim, "The berth planning problem," J. Operations Research Letters. vol. 22, No. 2, pp. 105-110. 

Elsevier, (1998)..  

[9]  Aslam S, Michaelides MP, Herodotou H. , "Internet of ships: a survey on architectures, emerging 

applications, and challenges," IEEE Internet of Things J. 2020;7:9714–27.  

[10]  A. Kamolov and S. H. Park,, "An IoT Based Smart Berthing (Parking) System for Vessels and Ports," in in 

Proceedings of the International Conference on Mobile and Wireless Technology. Springer, 2018, pp. 

129–139..  

[11]  R. Wang et al., "An Adaptive Ant Colony System Based on Variable Range Receding Horizon Control for 

Berth Allocation Problem," IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 

21675-21686, Nov. 2022, doi: 10.1109/TITS.2022.3172719..  

[12]  Boris Pérez-Cañedo, José Luis Verdegay, Alejandro Rosete, Eduardo René Concepción-Morales,, "A 

multi-objective berth allocation problem in fuzzy environment," Neurocomputing, Vols. 500, ISSN 0925-

2312,, no. https://doi.org/10.1016/j.neucom.2021.08.161, pp. 341-350, 2022.  



 

 
D.T1.4.1 - Berth allocation algorithm design report 54 

 

 

[13]  Bierwirth C, Meisel F. , "A survey of berth allocation and quay crane scheduling problems in container 

terminals.," Eur J Oper Res. 2010;202(3):615–27..  

[14]  Hsu H-P, Wang C-N, Chou C-C, Lee Y, Wen Y-F. , "Modeling and solving the three seaside operational 

problems using an object-oriented and timed predicate/transition net.," Appl Sci. 2017;7(3):218., no. 

https://doi.org/10.3390/app7030218.  

[15]  H. Eskandari, M. A. Rahaee, E. Hasannayebi, M. Memarpour and S. A. Malek,, "Evaluation of different 

berthing scenarios in Shahid Rajaee container terminal using discrete-event simulation," in 2013 Winter 

Simulations Conference (WSC), Washington, DC, USA, 2013.  

[16]  Bierwirth C, Meisel F. , "A follow-up survey of berth allocation and quay crane scheduling problems in 

container terminals.," Eur J Oper Res. 2015;244(3):675–89..  

[17]  Şahin C, Kuvvetli Y. , "Differential evolution based meta-heuristic algorithm for dynamic continuous 

berth allocation problem," Appl. Math Model. 2016;40(23–24):10679–88..  

[18]  Ernst AT, Oğuz C, Singh G, Taherkhani G. , "Mathematical models for the berth allocation problem in 

dry bulk terminals," J Sched. 2017;20(5):459–73..  

[19]  G. K. D. Saharidis & M. M. Golias & M. Boile & S. Theofanis & M. G. Ierapetritou, "The berth scheduling 

problem with customer differentiation: a new methodological approach based on hierarchical 

optimization," Int J Adv Manuf Technol (2010) 46:377–393, no. DOI 10.1007/s00170-009-2068-x.  

[20]  Hansen P, Oguz C, Mladenovic N (2008) , "Variable neighborhood search for minimum cost berth 

allocation.," Eur J Oper Res 191 (3):636–649. doi:10.1016/j.ejor.2006.12.057.  

[21]  Imai A, Nishimura E, Papadimitriou S , "Berth allocation with service priority.," Transp Res Part B 

37:437–457. doi:10.1016/S0191-2615(02)00023-1, 2003.  

[22]  Imai A, Chen HC, Nishimura E, Papadimitriou S, "The simultaneous berth and quay crane allocation 

problem," Transp Res Part E 44(5):900–920. doi:10.1016/j.tre.2007.03.003, 2008.  

[23]  Park MY, Kim HK, "A scheduling method for berth and quay cranes," Oper Res Spectr 25(1):1–23. 

doi:10.1007/s00291-002-0109-z Springer, 2003.  

[24]  De A, Pratap S, Kumar A, Tiwari M., "A hybrid dynamic berth allocation planning problem with fuel costs 

considerations for container terminal port using chemical reaction optimization approach," Ann Oper 

Res. 2020;290(1):783–811..  

[25]  Simrin A, Diabat A. , "The dynamic berth allocation problem: a linearized formulation," RAIRO-Oper Res. 

2015;49(3):473–94..  

[26]  S. R. Seyedalizadeh Ganji, A. Babazadeh & N. Arabshahi , "Analysis of the continuous berth allocation 

problem in container ports using a genetic algorithm," Journal of Marine Science and Technology 

volume 15, pages408–416 (2010), no. DOI: 10.1007/s00773-010-0095-9.  



 

 
D.T1.4.1 - Berth allocation algorithm design report 55 

 

 

[27]  Frojan P, Correcher JF, Alvarez-Valdes R, Koulouris G, Tamarit JM. , "The continuous berth allocation 

problem in a container terminal with multiple quays.," Expert Syst Appl. 2015;42(21):7356–66..  

[28]  Takao Yokota, Mitsuo Gen, Yin-Xiu Li, "Genetic algorithm for non-linear mixed integer programming 

problems and its applications," Computers & Industrial Engineering, no. https://doi.org/10.1016/0360-

8352(96)00041-1, pp. Volume 30, Issue 4, September 1996, Pages 905-917.  

[29]  Hsu H-P, Chiang T-L, Wang C-N, Fu H-P, Chou C-C. , "A hybrid GA with variable quay crane assignment 

for solving berth allocation problem and quay crane assignment problem simultaneously.," 

Sustainability. 2019;11(7):2018–38..  

[30]  Jos BC, Harimanikandan M, Rajendran C, Ziegler H. , "Minimum cost berth allocation problem in 

maritime logistics: new mixed integer programming models.," Sādhanā. 2019;44(6):149..  

[31]  Wang, F., Lim, A.: , "A stochastic beam search for the berth allocation problem. J. Decision Support," 

Systems. Vol. 42, No. 4, pp. 2186{2196. Elsevier, (2007).  

[32]  Lind M, Michaelides M, Ward R, Herodotou H, Watson R., " Boosting data-sharing to improve short sea 

shipping performance: evidence from Limassol port calls analysis.," Tech. Rep. 35, UNCTAD Transport 

and Trade Facilitation Newsletter No. 82-Second Quarter 2019.  

[33]  Xiang Xi, Liu C, Miao L. , "A bi-objective robust model for berth allocation scheduling under 

uncertainty.," Transp Res Part E Logist Transp Rev. 2017;106:294–319..  

[34]  Dulebenets MA. , "Application of evolutionary computation for berth scheduling at marine container 

terminals: Parameter tuning versus parameter control.," IEEE Trans Intell Transp Syst. 2017;19(1):25–

37..  

[35]  J. Li, D. Xiao, H. Lei, T. Zhang, T. Tian, "Using Cuckoo Search Algorithm with Q-Learning and Genetic 

Operation to Solve the Problem of Logistics Distribution Center Location," Mathematics Vol. 8, No. 149, 

2020, doi:10.3390/math8020149.  

[36]  Jean-François Cordeau, Gilbert Laporte, Pasquale Legato and Luigi Moccia, "Models and Tabu Search 

Heuristics for the Berth-Allocation Problem," Transportation Science, vol. Published By: INFORMS, no. 

https://www.jstor.org/stable/25769273, pp. Vol. 39, No. 4 (November 2005), pp. 526-538 (13 pages).  

[37]  Hu Z-H. , "Multi-objective genetic algorithm for berth allocation problem considering daytime 

preference," Comput Ind Eng. 2015;89:2–14..  

[38]  Shih-Wei Lin, Ching-Jung Ting & Kun-Chih Wu , "Simulated annealing with different vessel assignment 

strategies for the continuous berth allocation problem," Flexible Services and Manufacturing Journal 

volume 30, pages740–763 (2018), no. https://doi.org/10.1007/s10696-017-9298-2.  

[39]  Jakub Wawrzyniak a, Maciej Drozdowski a, Éric Sanlaville b, "Selecting algorithms for large berth 

allocation problems," European Journal of Operational Research, Vols. Volume 283, Issue 3, 16 June 

2020, Pages 844-862, no. https://doi.org/10.1016/j.ejor.2019.11.055.  



 

 
D.T1.4.1 - Berth allocation algorithm design report 56 

 

 

[40]  Pisut Pongchairerks, "A Probabilistic Hill-Climbing Algorithm for the Single-Source Transportation 

Problem," Sustainability 2023, 15(5), 4289; https://doi.org/10.3390/su15054289.  

[41]  Burke, E. K. and Bykov, Y. , "The late acceptance hill-climbing heuristic.," European Journal of 

Operational Research, 258(1):70 { 78., 2017.  

[42]  "The berth allocation problem in terminals with irregular layouts," European Journal of Operational 

Research, Vols. Volume 272, Issue 3, 1 February 2019, Pages 1096-1108, no. 

https://doi.org/10.1016/j.ejor.2018.07.019.  

[43]  Cristiano Cervellera, Mauro Gaggero, Danilo Macci, "A Receding Horizon Approach for Berth Allocation 

Based on Random Search Optimization," in ODS 2019 - Optimisation and Decision Science , Genova - 

Italy, 2019.  

[44]  Mauri GR, Ribeiro GM, Lorena LAN, Laporte G. , "An adaptive large neighborhood search for the discrete 

and continuous berth allocation problem," Comput Oper Res. 2016;70:140–54..  

[45]  Kavoosi M, et al. , "Berth scheduling at marine container terminals.," Marit Bus Rev. 2019;5(1):30–66..  

[46]  Geraldo R. Mauri, Alexandre C. M. Oliveira & Luiz Antonio Nogueira Lorena, "A Hybrid Column 

Generation Approach for the Berth Allocation Problem," in Evolutionary Computation in Combinatorial 

Optimization. EvoCOP 2008. Lecture Notes in Computer Science, vol 4972. Springer, Berlin, Heidelberg..  

[47]  S. Aslam, M. P. Michaelides and H. Herodotou, "Enhanced Berth Allocation using the cuckoo search 

algorithm," SN Computer Science, 3(4), no. doi:10.1007/s42979-022-01211-z, 2022.  

[48]  S. Mohammad, T. K. Ahmad and M. Laouchedi, "A hybrid method based on Cuckoo search algorithm 

for global optimization problems," Journal of Information and Communication Technology, vol. 17, 

2018.  

 

 

 

 

 

 

 

 

 

 

 



 

 
D.T1.4.1 - Berth allocation algorithm design report 57 

 

 

 

 

 

 

 

 

 

   Contacts 

 

 

         LP Municipality of Molfetta 
         antonella.fatone@comune.molfetta.ba.it  

 

 

                PP2 FLAG Molise Costiero 
               info@flagmolise.it  

  

 

        PP3 Municipality of Ulcinj 
        kabinet@ul-gov.me  
 

 

 

 

 

 

This project is co-financed by the European Union under the instrument for Pre-Accession Assistance (IPA II) 

This document has been produced with the financial assistance of the Interreg IPA CBC Italy-Albania-Montenegro Programme. The contents of this 

document are the sole responsibility of Municipality of Molfetta,  FLAG Molise Costiero and  Municipality of Ulcinj and can under no circumstances 

be regarded as reflecting the position of the European Union and of the Interreg IPA CBC Italy-Albania-Montenegro Programme Authorities. 

 

mailto:antonella.fatone@comune.molfetta.ba.it
mailto:info@flagmolise.it
mailto:kabinet@ul-gov.me

